Review the questions from the sample exam to prepare for the Certified SOLIDWORKS Professional exam.
Discover how to analyze a portion of a larger assembly to save time and to get more accurate results using submodeling. Create a submodel study from a parent study. Discover how loads transfer automatically into a submodel study. Save time and computational resources while maintaining accurate results. Use eDrawings to save the results.
This lesson contains exercises so you can improve your proficiency with Additional Tools before taking the Certified SOLIDWORKS Associate (CSWA) exam. The additional tools include reference geometry, configurations, making changes to a model, and more. There are 10 practice exercises for Additional Tools so this is the second of two lessons containing these exercises.
This lesson contains exercises so you can improve your proficiency with Assemblies before taking the Certified SOLIDWORKS Associate (CSWA) exam.
This lesson contains exercises so you can improve your proficiency with Features and Parts before taking the Certified SOLIDWORKS Associate (CSWA) exam. There are 12 practice exercises for Features and Parts so this is the second of two lessons containing these exercises.
This lesson contains exercises so you can improve your proficiency with Features and Parts before taking the Certified SOLIDWORKS Associate (CSWA) exam. There are 12 practice exercises for Features and Parts so this is the first of two lessons containing these exercises.
This lesson contains exercises so you can improve your proficiency with Sketching before taking the Certified SOLIDWORKS Associate (CSWA) exam.
The goal of this course is to teach you to create Weldment parts and drawings in SOLIDWORKS. Weldment functions are designed for modeling structural members and are especially useful for creating frames and woodworking projects. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
The goal of this course is to explore many of the surfacing features inside SOLIDWORKS. Along with how to create and apply these surfacing features, additional features and methods commonly used in ergonomic and industrial designed models are also introduced. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
When significant structural deformations, high stresses or complex contacts exist in applications, limitations of the static linear study are likely going to be reached. In such situations nonlinear computational algorithms need to be utilized. In this course, you will learn about the basic types of nonlinearities, and how to approach their solutions. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
In this course, you will learn about what types of dynamic environments exist and the tools available for their simulation. Dynamic problems can be computationally intensive. For that reason, dynamic loads are divided into several basic types. Each will call for a different simulation tool to treat it efficiently. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
The goal of this course is to teach you the fundamental skills and concepts of routing including how to create piping, tubing, electrical ducting, cable tray, and HVAC routes. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
SOLIDWORKS Routing is a unique application that combines the power of standard SOLIDWORKS files and features, such as parts, assemblies, drawings, and 3D sketches with routing-specific files like routing components and route sub-assemblies, to model 3D routed systems. This course focuses on the fundamental skills, concepts, and techniques central to creating and editing electrical routes. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
In this course, you will learn how SOLIDWORKS Plastics can be used to solve many of the common issues that affect plastic part designers and mold makers. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
In this course, you will learn how to use SOLIDWORKS Motion to analyze the kinematic or dynamic behavior of your SOLIDWORKS assembly model. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
In this course you will learn how to solve fluid flow and heat transfer problems using SOLIDWORKS Flow Simulation. SOLIDWORKS Flow Simulation is an easy to use computational fluid dynamics software package. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
This course teaches you how to manage SOLIDWORKS files while introducing the SOLIDWORKS file structure, file references, saving files, and file associativity. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
The following course relates to the features found in SOLIDWORKS Electrical Schematic, each modules provides insight into how to best leverage the available tools to achieve results. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
The goal of this course is to teach you to create sheet metal parts, flat patterns and drawings in SOLIDWORKS. Sheet metal design functions and techniques are useful for creating sheet metal parts to enclose or house product designs. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
The goal of this course is to teach you how to use the Mold Tools in SOLIDWORKS. In addition, manual surface modeling techniques will be introduced which can assist with solving mold making problems. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
In this course, you will learn the fundamentals of the SOLIDWORKS PDM Professional Application Programming Interface (API). The API is used to automate tasks as well as to add functionality to a SOLIDWORKS PDM Professional vault through the creation of standalone programs and add-in applications. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
The goal of this course is to introduce you to the SOLIDWORKS Application Programming Interface (API). The API is used to automate redundant and lengthy design tasks using SOLIDWORKS software and to create completed engineering applications that can run both inside and outside of the SOLIDWORKS application. Note Download files for this course are quite large, so we are not able to provide every sample file. If you would like to see more of the demonstration files, you can download the complete set of files for the original book. Go to https://www.solidworks.com/support/training/training-files to download the complete set of files.
Introduction to the material nonlinearity, namely metal plasticity. Effect of mesh quality on the quality of the numerical stress results. Solve problem with linear small displacement solution and identify a need for the nonlinear solution due to high stress. Define nonlinear study boundary conditions and loads. Define nonlinear material model with von Mises plasticity. Use simplified bi-linear plasticity material model. Review the stress and displacement results at various times. Study effect of mesh quality on the quality of the stress results. Use the mesh sectioning feature to review stress distribution within the bodies.
Introduction to the force control and displacement control methods in nonlinear module. Experience and resolve solution instabilities when solving nonlinear problems. Define nonlinear study boundary conditions and loads. Stabilize force control method to arrive to a final solution. Solve the problem using the displacement control method. Adjust boundary conditions for the displacement control method. Compare nonlinear results from the force control, and the displacement control methods.