Training Catalog
Learning Type:
This lesson contains exercises so you can improve your proficiency with Sketching before taking the Certified SOLIDWORKS Associate (CSWA) exam.
Lesson
2 years ago
This lesson contains exercises so you can improve your proficiency with Features and Parts before taking the Certified SOLIDWORKS Associate (CSWA) exam. There are 12 practice exercises for Features and Parts so this is the first of two lessons containing these exercises.
Lesson
2 years ago
This lesson contains exercises so you can improve your proficiency with Features and Parts before taking the Certified SOLIDWORKS Associate (CSWA) exam. There are 12 practice exercises for Features and Parts so this is the second of two lessons containing these exercises.
Lesson
2 years ago
This lesson contains exercises so you can improve your proficiency with Assemblies before taking the Certified SOLIDWORKS Associate (CSWA) exam.
Lesson
2 years ago
This lesson contains exercises so you can improve your proficiency with Additional Tools before taking the Certified SOLIDWORKS Associate (CSWA) exam. The additional tools include reference geometry, configurations, making changes to a model, and more. There are 10 practice exercises for Additional Tools so this is the second of two lessons containing these exercises.
Lesson
2 years ago
This lesson contains exercises so you can improve your proficiency with Additional Tools before taking the Certified SOLIDWORKS Associate (CSWA) exam. The additional tools include reference geometry, configurations, making changes to a model, and more. There are 10 practice exercises for Additional Tools so this is the second of two lessons containing these exercises.
Lesson
2 years ago
Automate the conversion of imported part geometry into a SOLIDWORKS feature-based, parametric model. Open an imported data file in SOLIDWORKS. Use the Import Diagnostics tool to repair imported geometry. View the FeatureWorks options. Use the Automatic feature Recognition Mode. Map the features to the part model. Guide the Automatic Recognition Mode for the best results.
Lesson
2 years ago
Control the conversion of imported part geometry into a SOLIDWORKS feature-based parametric model by converting specific features interactively. Interactively convert feature types. Convert features types that cannot be used with automated methods. Recognize multiple similar features at the same time. Re-recognize geometry and change it to a different type. Add patterns from the list of recognized features.
Lesson
2 years ago
Use Volume features to recognize geometry that does not match any other feature type. The volume feature can be replaced with a standard SOLIDWORKS feature. Recognize volume features. Recognize boss and cut revolve features. Use the Up To Face option with cut extrudes. Replace volume features with standard cut features. Edit the mapped features.
Lesson
2 years ago
Convert imported sheet metal part geometry into SOLIDWORKS feature-based, sheet metal, parametric models. Recognize common sheet metal features such as Base Flanges and Sketched Bends. Flatten the result to view the flat pattern. Use a hybrid approach combining the automatic and interactive methods.
Lesson
2 years ago
Convert imported assembly and multibody geometry into SOLIDWORKS feature-based, parametric models. Recognize imported assembly geometry as multiple parts. Use Edit Feature to recognize only selected features from the part. Use child features to recognize multiple features with a single selection.
Lesson
2 years ago
Explore the user interface of SOLIDWORKS Treehouse, an assembly structure planning tool for managers and designers alike. Tour the user interface to explore how to use SOLIDWORKS Treehouse. Build the structure for a new assembly complete with parts and drawings.
Lesson
2 years ago
Learn about SOLIDWORKS Flow Simulation software. View sample applications from the real world. View sample real world examples where the software was used.
Lesson
2 years ago
Prepare SOLIDWORKS geometry for Flow Simulation analysis. Create lids manually. Create lids using the Lid Creation tool. Check if the geometry is water tight for internal flow analysis. Detect leaks in improperly sealed geometry.
Lesson
2 years ago
Build the SOLIDWORKS Flow Simulation project. Use Wizard to define Flow Simulation project. Define boundary conditions. Define goals. Mesh the model geometry.
Lesson
2 years ago
Run SOLIDWORKS Flow simulation and monitor it. Postprocess Flow simulation results. Launch the SOLIDWORKS Flow simulation and monitor it in the solver window. Monitor execution of the simulation in the solver window. Postprocess results using cut plots, surface plots, flow trajectories. Create 2D graphs from the calculated results, extract results on desired geometrical entities.
Lesson
2 years ago
Mesh the Flow Simulation geometry using automated meshing approach. Understand the Basic mesh, and Initial mesh concepts. Control the Global Initial mesh refinement level. Analyze the Minimum Gap Size feature value as the project settings change. Plot mesh on cut plots.
Lesson
2 years ago
Mesh the Flow Simulation geometry using manual meshing approach. Control Basic mesh settings. Apply manual mesh setting and options. Define control planes. Define and apply local mesh controls. Plot mesh on cut plots.
Lesson
2 years ago
Apply a setback fillet to vertices where three or more edges meet. Setback fillets can model cleaner looking blends at the vertices. Add setback values to vertices where three or more edges meet.
Lesson
2 years ago
Set the options of a sweep feature to control the orientation and twist of the profile along the path. Use curvature combs to evaluate the curvature of paths and guide curves. Control the twist of the profile along the path of a sweep.
Lesson
2 years ago
Create 2D or 3D curves defined by mathematical equations. The curve can be explicit where y is a function of x, or parametric where x, y, and z are functions of t. Create a 3D spline using a parametric mathematical equation. Create a sweep feature using one 3D spline as the path and another as the guide curve.
Lesson
2 years ago
Learn to use modeling techniques that allow for efficient transition between part design and delivery of the finished castings. Create a motorcycle gear case by designing the production tooling for the part. Start by designing the core, or the negative space, of the gear case. Design the pattern, or outside faces, of the gear case as a separate solid body. Save the tooling bodies as new part files. Combine the solid bodies, subtracting the core from the pattern. Apply machining features to finish the model.
Lesson
2 years ago
When the internal cut features of a model are of most importance in a design, one approach is to create solid features that represent the negative space of a part. Once the negative space is complete, the Combine command can be used to subtract the volume from another solid body. Use solid geometry representing the interior space of a manifold to create the negative space of the part. Create a separate solid body surrounding the geometry as the main body of the manifold. Combine the solid bodies in the part using a subtract operation.
Lesson
2 years ago
SOLIDWORKS includes many tools for evaluating part geometry. By analyzing the curvature of a parts curves and surfaces, you can evaluate the quality of transitions between features and the surfaces themselves. Understand what curvature is. Display Curvature to use colors to evaluate the surfaces of a model. Use Curvature Combs to evaluate sketch curves. Learn how to display the minimum radius and inflection points of a curve. Use zebra stripes to simulate reflections on faces of a model. Understand how to use evaluate tools to recognize tangency and curvature continuous conditions.
Lesson
2 years ago