Use the Physical Dynamics options when moving components to allow realistic interaction between assembly components. Physical dynamics identifies collisions between faces and allows components to push one another when they come into contact. Understand options within the Move Component command. Use the Physical Dynamics option to simulate interaction between components being moved. Understand the limitations of using Physical Dynamics versus a Motion Study. Learn how to troubleshoot issues when using the physical dynamics option.
Use the Interference Detection tool to identify any overlap between parts in an assembly. Clearance between parts can also be detected using the Clearance Verification tool. Use the Interference Detection tool to identify interferences between assembly components. Explore the options available within the Interference Detection tool. Use the Clearance Verification tool to identify clearances between assembly components. Explore the options available with the Clearance Verification tool.
Create a spring using a sweep feature defined in the context of an assembly. Then, animate the spring by adding a linear motor in MotionManager. Create an animation. Model a spring using an in-context sweep. Add a linear motor to stretch and compress the spring. Understand the impact of rebuild errors on animations.
Take advantage of selected global and local settings, techniques, and tips that can lead to faster assemblies. Examine helpful settings in System Options and Document Properties. Understand how to work with large assembly FeatureManager design trees. Learn a few tips to speed up view manipulations.
This is an introduction to some of the assembly techniques that can further reduce the time required to open and edit your large assembly. Learn the advantages of using assembly techniques. Examine some details about each technique. Understand how the testing tool Assembly Visualization can help you find components that need to be simplified.
Compare opening an assembly using each of the three assembly modes: Resolved, Lightweight, and Large Design Review. Discover the differences between each mode. Examine the best use for each mode and how to use them. Understand the options when switching between modes.
Understand the characteristics of a large assembly, how SOLIDWORKS opens an assembly, and what can cause it to slow down. Also, a quick look at some possible solutions. Explore what makes a large assembly. Learn the sequence of steps SOLIDWORKS uses to open an assembly. Discover some common large assembly slowdowns.
Select components according to their position relative to assembly envelopes and hide, suppress, or delete the selected components. Utilize assembly envelopes as reference components that are ignored by bills of materials and mass property calculations. Convert components to assembly envelopes. Select components based on their position relative to an assembly envelope. Hide or show components selected using an assembly envelope.
Create smart components by selecting components and features in a defining assembly. Then, insert smart components into an assembly to add the components and create the features. Create smart components in a defining assembly. Insert smart components into an assembly to create components and features. Select reference faces for the features of a smart component.
The Copy with Mates command copies existing components along with their mates. New references can be selected for the new mates to allow for modified placement. Use the Copy with Mates command to create new instances of components along with their mates. Understand when mate references for the copied mates are repeated. Understand when some of the copied mates require new mate references.
Use drawing view commands that are specific to working with assembly models including broken out section views, alternate position views, and exploded views. Use drawing view properties to represent assembly configurations. Create a broken-out section view to show internal components of the assembly. Create an alternate position view using an existing or a new configuration. Create an exploded assembly drawing view.
A SpeedPak configuration improves performance of large assemblies by simplifying the assembly without losing its file references. Create SpeedPak configurations. Use SpeedPak configurations in higher level assemblies. Understand the benefits and limitations of using a SpeedPak configuration.
Use multiple mate mode within the Mate command as a shortcut to create many mate relations to one common reference. Create multiple mates to a common reference using multiple mate mode. Toggle alignment of mates. Explore different techniques to edit mate features.
Smart Mates can be used to automate mates while adding a component to an assembly as well as for mating existing components. Different mate relations can be created based on the geometry that is specified for the Smart Mate. Automate mates while adding a component to an assembly. Use Smart Mates to mate existing components. Use Smart Mates with circular edges to generate multiple mates simultaneously.
Create display states to control the visibility and display style of components. Display states can be linked to configurations of an assembly. Display states can control hide/show state, display mode, appearance, and transparency of components. Add display states to an assembly. Modify visual properties of components with display states. Explore component selection techniques. Use the display pane. Open an assembly to a specific configuration and display state. Link display states to configurations.
Create an animation to simulate a cable winding off one reel onto another reel. Use a helix, reference plane, and sweep to model the cable. Define equations to modify the geometry and simulate the winding cable. Create an animation. Use a helix, reference planes, and a sweep feature to model a cable. Define equations to modify the geometry. Change the value of a mate over time using the MotionManager.