Katalog školení
SustainabilityXpress odhaduje uhlíkovou stopu modelu, spotřebované množství energie za dobu životnosti a vliv na okyselení ovzduší a eutrofizaci vody. Informace se analyzují na základě použitého materiálu, výrobního procesu, výrobní oblasti, místa použití a konce životnosti. Vysvětlení, jak různé materiály a výrobní procesy ovlivňují dopad návrhu na životní prostředí. Specifikace informací o použití výrobku pro určení hodnot pro přepravu a konec životnosti. Vysvětlení informací zobrazených v grafech dopadu na životní prostředí. Jak stanovit základní hodnoty dopadu na prostředí pro účely srovnávání změn. Generování zprávy výstupu nástroje Sustainability.
Lesson
3 roků před
ENG
JPN
Vytváření, úprava a uložení vlastních šablon sestavy vyznačení trasy s použitím existujících šablon vyznačení trasy. Vytvoření a uložení vlastní šablony sestavy vyznačení trasy. Určení různých norem skicování, jednotek a dalších vlastností dokumentu jako výchozích hodnot, které se použijí při vytvoření nové trasy s použitím vlastní šablony.
Lesson
3 roků před
ENG
JPN
Přidání redukční odbočky k existující trase a její orientace s použitím klávesových zkratek a osového kříže. Použití nástroje Automatické trasování k připojení potrubí vycházejícího z přídavného prvku. Přidání přímých tvarovek k existujícím trasám. Použití klávesových zkratek a osového kříže k orientaci a umístění přímých tvarovek.
Lesson
3 roků před
ENG
JPN
Spojení existujících součástí pomocí ortogonálních trubic a standardních tvarovek z knihovny. Použití prvku Automatické trasování k automatickému generování tras Přidání standardních tvarovek do sestav. Vytváření ortogonální cest mezi prvky.
Lesson
3 roků před
ENG
JPN
Použití nástroje SimulationXpress k analýze deformace dílů prostřednictvím použití uchycení a zatížení a definovaní materiálů. Použití variabilního zatížení a/nebo tlaku a přizpůsobení materiálů. Jak spustit nástroj SimulationXpress a použít ho k analýze jednotělového dílu. Osvojení práce s položkami ve stromu návrhu. Jak lze použít tlak a zatížení rovnoměrně a konstantně pouze na plochy. Jak vlastnosti uživatelských materiálů musí přesně reprezentovat materiály dílů.
Lesson
3 roků před
ENG
JPN
Přizpůsobení přesnosti simulace pomocí přizpůsobení hustoty sítě. Spuštění simulace. Použití průvodce SimulationXpress k prohlížení výsledků, jako jsou napětí, posunutí, deformace a koeficient bezpečnosti simulace. Generování a uložení souboru eDrawings nebo dokumentu Word s výsledky simulace. Přizpůsobení sítě v simulaci. Spuštění simulace. Interpretace výsledků simulace. Generování souboru eDrawings nebo dokumentu Microsoft Word s výsledky.
Lesson
3 roků před
ENG
JPN
Optimalizace hodnoty koeficientu bezpečnosti, maximálního napětí nebo maximálního posunutí na přijatelnou hodnotu. Přizpůsobení rozměrů v rozsahu za účelem dodržení požadavků. Zeštíhlení návrhu nebo redukce nákladů na materiál, pokud návrh splňuje nebo překračuje koeficient bezpečnosti. Dosažení koeficientu bezpečnosti prostřednictvím optimalizace návrhu. Použití integrovaných funkcí automatizace k optimalizaci modelu. Spuštění simulace.
Lesson
3 roků před
ENG
JPN
Tento modul se zabývá použitím popisových pohledů k organizaci informací o výrobku a výrobě (PMI). Zobrazení PMI s použitím nástroje Dynamické popisové pohledy. Vložení ortogonálních popisových pohledů a přidání vlastního popisového pohledu s použitím možnosti Podle výběru. Opětovné přiřazení PMI různým popisovým pohledům k organizování zobrazení. Použití pohledů k zobrazení modelu z více perspektiv současně.
Lesson
3 roků před
ENG
Tento modul se věnuje třem souhrnným kategoriím použití SOLIDWORKS MBD. Zkosené díly: Vytvoření kót umístění DimXpert mezi zkosenými povrchy potlačením úkosu nebo použitím protínající se geometrie. Plechové díly: Použití samostatné konfigurace pro rozvinutý tvar plechového dílu. Použití referenčních kót ke kótování mezi čarami ohybu plechu. Svařované konstrukce: Použití tabulek přířezů k zobrazení kót pro konstrukční prvky svařovaných konstrukcí. Přidání 3D poznámek ke svařované konstrukci a použití symbolů svařování.
Lesson
3 roků před
ENG
Review the basic functionality of the SOLIDWORKS Nonlinear module. Show activation of SOLIDWORKS Simulation Add-In. Learn three basic nonlinear phenomena in engineering calculations. Review of control methods available in the module. Review of basic material models available in the module.
Lesson
3 roků před
ENG
Review the difference between small displacement linear, and large displacement nonlinear analyses. Introduce the concept of time curves, and discuss basic options. Solve small displacement linear analysis to demonstrate inaccurate solution. Define a nonlinear simulation study. Use time curves to control variation of the nonlinear loading. Use fixed increment stepping, and autostepping stepping procedures to solve the nonlinear problem. Postprocess results of the nonlinear simulation. Compare results from nonlinear studies with various setup parameters.
Lesson
3 roků před
ENG
Introduction to the force control and displacement control methods in nonlinear module. Experience and resolve solution instabilities when solving nonlinear problems. Define nonlinear study boundary conditions and loads. Stabilize force control method to arrive to a final solution. Solve the problem using the displacement control method. Adjust boundary conditions for the displacement control method. Compare nonlinear results from the force control, and the displacement control methods.
Lesson
3 roků před
ENG
Introduction to the material nonlinearity, namely metal plasticity. Effect of mesh quality on the quality of the numerical stress results. Solve problem with linear small displacement solution and identify a need for the nonlinear solution due to high stress. Define nonlinear study boundary conditions and loads. Define nonlinear material model with von Mises plasticity. Use simplified bi-linear plasticity material model. Review the stress and displacement results at various times. Study effect of mesh quality on the quality of the stress results. Use the mesh sectioning feature to review stress distribution within the bodies.
Lesson
3 roků před
ENG
Animace nabízejí extra vizuální zpodobnění možností skládání sestavy a jejího rozebrání a zobrazení pořadí, v němž byly přidány díly. Animace jsou neuvěřitelně skvělým doplňkem k rozloženým pohledům. Pomáhají výrobcům a poskytovatelům montáže přesně pochopit, jak se součásti sestavují. Animace také slouží jako skvělý marketingový nástroj, protože jsou schopny předvést složitost návrhu a zároveň propracovanost konečného produktu. V této lekci bude vytvořena animace v aplikaci SOLIDWORKS Composer pomocí rozložení doplňkových součástí v této sestavě.
Lesson
3 roků před
ENG
FRA
DEU
JPN
ESP
ITA
CHS
Jak zahájit vyznačení trasy a jak podsestava trasy organizuje a uchovává součásti trasy. Aktivace doplňkového modulu Routing. Umístění nabídek Potrubí, Ohebná trubka a Elektro. Vysvětlení podsestavy trasy. Rozpoznání součásti knihovny vyznačení trasy. Použití nástroje Routing Library Manager k načtení nastavení.
Lesson
3 roků před
ENG
JPN
Jak optimalizovat návrhy a snížit hmotnost modelu prostřednictvím variace rozměrů modelu. Použití parametrů a omezení pro optimalizaci návrhu a splnění cílů. Použití designových studií v softwaru Simulation.
Lesson
3 roků před
ENG
Pomocí aplikace SOLIDWORKS Composer lze vytvářet rozložené pohledy. Jsou neuvěřitelně nápomocné při zobrazení všech součástí použitých v sestavě, nebo k zobrazení postupu sestavení, rozebrání nebo opravy sestavy. Rozložené pohledy je možné využít také k dalším účelům, jako je například předvedení návrhu marketingovým týmem. V této lekci si ukážeme rozložený pohled a detailování jednotlivých součástí pomocí přidávání štítků k jednotlivým dílům sestavy.
Lesson
3 roků před
ENG
FRA
DEU
JPN
ESP
ITA
CHS
Sledování analýzy napětí dílu s použitím SimulationXpress k určení deformace dílu pod vlivem zatížení (silového nebo tlakového). Předpoklady a omezení nástroje SimulationXpress. Sledování analýzy napětí prováděné na dílu.
Lesson
3 roků před
ENG
JPN
Review a variety of 3D solid modeling tools exclusively for DraftSight Premium. Learn to use some common 3D tools to create simple primitive shapes and complex custom 3D geometries. Create 3D basic geometric forms such as Box, Wedge, Cylinder, Sphere, and Torus. Generate sketch-based or complex 3D shapes using Extrude, Revolve, Sweep, PolySolid, Push and Pull, and Loft.
Lesson
2 roků před
ENG
Create some very complex 3D surfaces or geometries by defining a mesh with custom contours and numerous editable points for better control and design. Create basic primitive mesh shapes as a starting point to the design. Generate individual mesh faces using 3D Face tool. Control a network of mesh points by defining an outer perimeter with the Edge Mesh tool to fill it in. Use the 3D Mesh command allowing to define the location of every point in a mesh.
Lesson
2 roků před
ENG
Manipulate the 3D Model view properly to work on the geometry as intended. Use a variety of tools to enable rotating the model freely, updating the model view type and to add custom coordinates systems to get the right location and angle. View the 3D model at different angles such as Top, Bottom, Left and various isometric angles. Use the computer mouse or orbit command to freely pan, zoom and rotate the 3D model. Learn to view with different view types such as Wireframe, Hidden, Gouraud, Flat with Edges, etc. Setup custom coordinates systems with CCS defining based on a view or entity.
Lesson
2 roků před
ENG
Define an accurate 2D profile or sketch using Geometric and/or Dimensional Constraints. Geometric Constraints create and uphold relationships between sketch entities while Dimensional Constraints specify distances or angles between the sketch entities. Assign Geometric Constraints such as Horizontal, Vertical, Coincident, Perpendicular, Parallel, Tangent, etc. Create Dimensional Constraints with numeric values with labels. Manage Dimensional Constraints for edit, delete and create user-defined parameters.
Lesson
2 roků před
ENG
Use the Machine dialog to define the parameters of the machine tool used to manufacture the part. Set machine properties to select machine type and duty for manufacturing. Select tool crib to be used by machine. Select the post processor used to generate NC code. Set posting parameters for post processor.
Lesson
2 roků před
ENG
Generate a cam profile based on an input follower displacement from a data set. Define a motion of a follower using Data Points. Generate a cam profile using Trace Path. Verify the generated cam profile.
Lesson
2 roků před
ENG