Eğitim Kataloğu
Sıralama ölçütü::
Öğrenme Türü:
Erişim Seviyesi:
Product/Role:
Sırala:
Sürüm:
Sırala:
Dil:
Kategoriler:
Sırala:
Yorulma modülünü kullanarak tekrarlanan yükleme koşulları altında bir yapıyı nasıl analiz edeceğinizi keşfedin. Tekrarlanan yükleme analizi için malzemelere S-N eğrileri uygulayın. Daha gerçekçi sonuçlar için düzeltme faktörleri uygulayın. Malzeme ömrünü analiz etmek için hasar grafiklerini görüntüleyin.
Review the basic functionality of the SOLIDWORKS Dynamics module. Show activation of SOLIDWORKS Simulation Add-In. Review the available modules for specific dynamic load times.
Setup initial dynamic simulation, solve and postprocess the results. Understand the importance of natural frequencies in dynamic simulations. Compare the dynamic and static results. Setup, run and postprocess a basic transient study Calculate a sufficient number of natural frequencies Use the mass participation factor to estimate a sufficient number of natural frequencies Run dynamic simulation for slow and fast forces, and compare their results
Setup, run and postprocess a dynamic simulation with the base motion shock excitation. Understand the optimum mesh design, and get more familiar with the estimation of the minimum number of natural frequencies. Understand the basics of damping. Setup, run and postprocess a transient study Define base excitation shock load Use the mass participation factor to select a sufficient number of natural frequencies Optimize the finite element mesh for dynamic simulation Define structural damping Calculate the maximum time step Use remote mass to simplify the model
Setup, run and postprocess a harmonic simulation. Understand and practice the frequency domain excitation definition. Practice postprocessing results from the harmonic study. Setup, run and postprocess a harmonic study Use the mass participation factor to select a sufficient number of natural frequencies Optimize the finite element mesh for dynamic simulation Define the harmonic load in the frequency domain Postprocess results from the harmonic study
Review the basic functionality of the SOLIDWORKS Nonlinear module. Show activation of SOLIDWORKS Simulation Add-In. Learn three basic nonlinear phenomena in engineering calculations. Review of control methods available in the module. Review of basic material models available in the module.
Review the difference between small displacement linear, and large displacement nonlinear analyses. Introduce the concept of time curves, and discuss basic options. Solve small displacement linear analysis to demonstrate inaccurate solution. Define a nonlinear simulation study. Use time curves to control variation of the nonlinear loading. Use fixed increment stepping, and autostepping stepping procedures to solve the nonlinear problem. Postprocess results of the nonlinear simulation. Compare results from nonlinear studies with various setup parameters.
Introduction to the force control and displacement control methods in nonlinear module. Experience and resolve solution instabilities when solving nonlinear problems. Define nonlinear study boundary conditions and loads. Stabilize force control method to arrive to a final solution. Solve the problem using the displacement control method. Adjust boundary conditions for the displacement control method. Compare nonlinear results from the force control, and the displacement control methods.
Introduction to the material nonlinearity, namely metal plasticity. Effect of mesh quality on the quality of the numerical stress results. Solve problem with linear small displacement solution and identify a need for the nonlinear solution due to high stress. Define nonlinear study boundary conditions and loads. Define nonlinear material model with von Mises plasticity. Use simplified bi-linear plasticity material model. Review the stress and displacement results at various times. Study effect of mesh quality on the quality of the stress results. Use the mesh sectioning feature to review stress distribution within the bodies.
Model ölçülerini değiştirerek model ağırlığını düşürmek için tasarımların nasıl optimize edileceğini öğrenin. Amaçlara ulaşmak için tasarımlarınızı optimize etmek üzere parametreler ve kısıtlamalar uygulayın. Tasarım etütlerinin Simulation ile nasıl çalıştığını öğrenin.
Generate a cam profile based on an input follower displacement from a data set. Define a motion of a follower using Data Points. Generate a cam profile using Trace Path. Verify the generated cam profile.
Simulate a mechanism placing an object into a box and a cover on the box. Apply servo motors. Add proximity sensors. Create and run event based motion study.
Tüm modülleri inceleyerek SOLIDWORKS Simulation ürün paketini keşfedin. SOLIDWORKS Flow kullanarak ısı aktarımı ve akışkan akışını analiz edin. Tasarımlarınızın çevresel etkisini azaltmak için Sustainability kullanın. SOLIDWORKS Simulation kullanarak gerilim-gerinim analizini keşfedin. SOLIDWORKS Motion kullanarak sert gövde dinamiklerini analiz edin. SOLIDWORKS Plastics kullanarak plastik enjekte edilmiş parçaların dolgu desenlerini görüntüleyin.
Yük Durumu Yöneticisi'ni kullanarak farklı konfigürasyonlardaki yükleri nasıl birleştireceğinizi öğrenin. Farklı yükleme koşullarının birleşik etkisinin tasarımınızı nasıl etkilediğini keşfedin. Analizinizde hareketli ve ölü yükleri birleştirin. Yükleri uygun bir şekilde birleştirmek için denklemler kullanın.
Radyasyon, iletim ve konveksiyonu dikkate alırken nasıl termal analiz yapacağınızı öğrenin. İletim, konveksiyon ve radyasyonun etkilerini dikkate alarak doğru termal sonuçlar elde edin. Sıcaklık ve ısı akısını ölçün.
Learn about SOLIDWORKS Flow Simulation software. View sample applications from the real world. View sample real world examples where the software was used.
Prepare SOLIDWORKS geometry for Flow Simulation analysis. Create lids manually. Create lids using the Lid Creation tool. Check if the geometry is water tight for internal flow analysis. Detect leaks in improperly sealed geometry.
Build the SOLIDWORKS Flow Simulation project. Use Wizard to define Flow Simulation project. Define boundary conditions. Define goals. Mesh the model geometry.
Run SOLIDWORKS Flow simulation and monitor it. Postprocess Flow simulation results. Launch the SOLIDWORKS Flow simulation and monitor it in the solver window. Monitor execution of the simulation in the solver window. Postprocess results using cut plots, surface plots, flow trajectories. Create 2D graphs from the calculated results, extract results on desired geometrical entities.
Mesh the Flow Simulation geometry using automated meshing approach. Understand the Basic mesh, and Initial mesh concepts. Control the Global Initial mesh refinement level. Analyze the Minimum Gap Size feature value as the project settings change. Plot mesh on cut plots.
Mesh the Flow Simulation geometry using manual meshing approach. Control Basic mesh settings. Apply manual mesh setting and options. Define control planes. Define and apply local mesh controls. Plot mesh on cut plots.
SOLIDWORKS Motion is a virtual prototyping tool for engineers and designers interested in understanding the performance of their assemblies. Perform a basic motion analysis using SOLIDWORKS Motion. Simulate the weight of a vehicle on the jack. Determine toque and power required to lift it.
Examine the motion of a catapult as it is loaded and throws a projectile. Add solid bodies contact, add a spring and apply friction. Determine torque required to rotate the crank and load the catapult. Determine the displacement of the loading spring. Study the effect of contact friction on the motion of the projectile.
Bu modül, Simulation kullanıcı arabirimini tanıtmakta ve basit bir parçanın kurulum işlemini gözden geçirmektedir. Daha sonra simülasyon çalıştırılır ve sonuçlar analiz edilir. Simulation kullanıcı arabirimini öğrenin. Fikstür, malzeme ve yük uygulayın. Simülasyonu çalıştırıp modeli, gerilim ve yer değiştirme için analiz edin.