SustainabilityXpress는 모델의 탄소 배출량, 전체 수명주기의 에너지 소모, 대기 산성화, 수질 부영양화를 예측합니다. 사용된 재질, 제조 공정, 제조 지역, 사용 지역, 제품 수명 종료 등의 정보를 분석합니다. 각기 다른 재질과 제조 공정이 설계에 미치는 환경적 영향을 살펴봅니다. 운송 및 제품 수명 종료에 대한 값을 결정하기 위해 제품 사용 정보를 지정합니다. 환경 영향 차트에 표시된 정보를 이해합니다. 변경 추세를 비교해볼 수 있도록 환경 영향 기준을 설정하는 방법을 학습합니다. Sustainability 출력 보고서를 생성합니다.
Lesson
3 년 전
ENG
JPN
바로가기 키와 트라이어드를 사용하여 줄어드는 유출구 티를 기존 배관에 삽입하고 방향을 지정합니다. 자동 배관 도구로 파이프를 연결하여 추가 피처를 생성합니다. 기존 배관에 일직선 이음쇠를 추가합니다. 바로가기 키와 트라이어드를 사용하여 일직선 이음쇠의 방향과 위치를 지정합니다.
Lesson
3 년 전
ENG
JPN
블록은 스케치 요소와 치수를 함께 그룹화하여 스케치에서 하나로 이동할 수 있습니다. 레이아웃 스케치와 함께 어셈블리 스케치에서 바로 전체 어셈블리로 이동할 수 있습니다. 블록을 작성, 편집, 저장합니다. 블록을 사용하여 어셈블리의 레이아웃 스케치를 작성합니다. 기존 블록을 기반으로 어셈블리 부품을 생성합니다.
Lesson
2 년 전
ENG
JPN
Routing Library Manager를 활용하여 사용자 정의 배관 스팩 템플릿을 작성하고 사용합니다. 파이프 관의 크기와 일정을 지정합니다. 파이핑 및 튜빙 데이터베이스에서 파이프와 엘보를 선택합니다. 배관 스팩 템플릿과 함께 배관 부품을 삽입합니다.
Lesson
2 년 전
ENG
JPN
스윕 피처의 경로로 사용하는 가변 피치 나선을 작성합니다. 가변 피치 나선의 형상을 정의하는 옵션에 대해 학습합니다. 가변 피치 나선을 작성합니다. 스윕 피처에 대한 프로파일과 경로 스케치의 위치를 적절하게 설정합니다. 한 점에서 곡선에 수직인 평면을 작성합니다.
Lesson
2 년 전
ENG
JPN
세 개 이상의 모서리가 만나는 꼭지점에 세트백 필렛을 적용합니다. 세트백 필렛은 꼭지점에서 클리너 모양의 혼합을 모델링할 수 있습니다. 두 개 또는 세 개의 모서리가 만나는 꼭지점에 세트백 값을 추가합니다.
Lesson
2 년 전
ENG
JPN
스케치 요소의 방향을 지정하기 위해 모델의 기본 좌표계를 사용하여 3D 스케치를 작성합니다. 구속조건과 치수를 부가하여 스케치 요소의 크기를 제한합니다. 스케치할 때 화면상의 피드백을 사용합니다. 평면을 사용하여 3D 스케치 요소의 방향을 지정합니다. Tab 키를 누르거나 평면 또는 평면 면을 사용하여 스케치 평면을 변경합니다. 3D 스케치 요소를 수정하기 위해 여러 개의 뷰포트를 표시합니다.
Lesson
2 년 전
ENG
JPN
선택한 꼭지점과 통제점에 반경 값을 설정하는 가변 반경 필렛을 작성합니다. 또한 반경을 0으로 설정하여 필렛이 한 점에 수렴하도록 할 수 있습니다. 선택한 모서리를 따라 반경이 달라지는 필렛을 작성합니다. 꼭지점 또는 통제점에서 반경 값을 수정합니다. 필렛이 한 점에 수렴해야 하는 0 반경 필렛을 작성합니다.
Lesson
2 년 전
ENG
JPN
로프트 피처 또는 경계 피처를 사용하여 주변 지오메트리와 잘 혼합되는 전이를 작성합니다. 인접한 면의 곡률과 일치하도록 경계 피처에 대해 탄젠시 옵션을 설정합니다. 다른 프로파일을 가진 모델의 두 부분을 결합합니다. 경계 피처 생성을 위한 옵션을 살펴봅니다.
Lesson
2 년 전
ENG
JPN
스케치를 다른 스케치에 투영하여 물병의 케이지를 나타내는 곡선을 작성합니다. 물병의 전체 형상을 나타내는 스케치를 작성합니다. 한 스케치를 다른 스케치에 투영하여 3D 곡선을 작성합니다. 3D 곡선을 경로로 사용하여 스윕 피처를 작성합니다.
Lesson
2 년 전
ENG
JPN
모델의 면들이 스케치 평면 또는 서로 교차하는 2D 또는 3D 스케치를 작성합니다. 스케치를 사용하여 구배 각도를 결정하거나 스윕 경로로 곡률을 평가하는 등의 작업을 수행할 수 있습니다. 선택한 면이 스케치 평면에 교차하는 2D 스케치 요소를 작성합니다. 선택한 면이 서로 교차하는 3D 스케치 요소를 작성합니다.
Lesson
2 년 전
ENG
JPN
원래 스케치를 여러 번 사용하여 스케치를 복사 및 파생합니다. 복사된 스케치는 원본과 관련이 없지만, 파생된 스케치는 원래 스케치가 바뀔 때마다 변경됩니다. 원래 스케치와 동일한 형상을 유지하는 파생된 스케치를 작성합니다. 스케치를 복사합니다. 스케치의 위치와 치수를 수정합니다. 세 가지 프로파일 스케치를 통과하는 로프트를 작성합니다.
Lesson
2 년 전
ENG
JPN
자유곡선 점, 구속조건, 조정 다각형, 자유곡선 핸들을 사용하여 자유곡선을 작성 및 수정합니다. 자유곡선은 여러 개의 자유곡선 점 또는 적게는 두 개의 자유곡선 점을 가질 수 있습니다. 자유곡선으로 스케치합니다. 자유곡선 점의 수를 편집합니다. 구속조건, 조정 다각형, 자유곡선 핸들을 사용하여 자유곡선의 형상을 수정합니다.
Lesson
2 년 전
ENG
JPN
로프트는 프로파일 사이에 전이를 주어 피처를 만듭니다. 로프트는 베이스, 보스, 컷, 곡면일 수 있습니다. 구속조건과 연결 파라미터를 지정하여 원하는 결과를 달성할 수 있습니다. 두 개의 프로파일 사이에 기본 로프트 피처를 작성합니다. 중심선 곡선, 끝 구속, 연결점을 사용하여 형상을 세분화합니다. 로프트 프로파일과 연결점을 정확히 선택합니다.
Lesson
2 년 전
ENG
JPN
스윕 프로파일 스케치를 작성하는 프로그램 사용법을 학습합니다. 프로파일 스케치 요소와 안내 곡선 사이에 관계를 추가합니다. 전체 경로를 따라 프로파일의 올바른 형상을 보장하는 스케치 구속조건을 작성합니다. 프로파일 스케치를 작성하기 전에 경로와 안내 곡선을 설정합니다. 안내 곡선과 프로파일 스케치 사이에 관통 구속조건을 부가합니다. 안내 곡선이 포함된 스윕 피처를 작성합니다. 수직 및 평행 구속조건을 사용하여 스윕 프로파일을 정의합니다.
Lesson
2 년 전
ENG
JPN
스윕 경로를 따라 스윕 프로파일의 방향과 꼬임을 제어하는 스윕 옵션을 학습합니다. 스윕 프로파일을 제어하기 위한 방향/꼬임 옵션을 설정합니다. “경로따라”와 “일정 반경 유지”의 차이점을 이해합니다. 곡률 표시를 사용하여 스윕 프로파일의 꼬임을 관찰합니다.
Lesson
2 년 전
ENG
JPN
경로를 따라 프로파일의 방향과 꼬임을 제어하기 위해 스윕 피처의 옵션을 설정합니다. 곡률 표시를 사용하여 경로와 안내 곡선의 곡률을 평가합니다. 스윕의 경로를 따라 프로파일의 꼬임을 제어합니다.
Lesson
2 년 전
ENG
JPN
대화 상자에 직접 입력하거나 ASCII 텍스트 파일에서 불러온 일련의 X, Y, Z 점을 통과하는 곡선을 작성합니다. 곡선 통과점에 대한 X, Y, Z 좌표를 입력하여 곡선을 작성합니다. 곡선 통과점에 대한 X, Y, Z 점 세트를 불러옵니다. 곡선을 스케치 요소로 변환합니다.
Lesson
2 년 전
ENG
JPN
수학 방정식으로 정의한 2D 또는 3D 곡선을 작성합니다. 이 곡선은 y가 x의 함수인 명시적 방정식이 되거나 x, y, z가 t의 함수인 파라메트릭이 될 수 있습니다. 파라메트릭 수학 방정식을 사용하여 3D 자유곡선을 작성합니다. 하나의 3D 자유곡선을 경로로, 다른 하나는 안내 곡선으로 사용하여 스윕 피처를 작성합니다.
Lesson
2 년 전
ENG
JPN
원통형 또는 원추형 곡면 주위로 전개 스케치를 포장합니다. 곡면 포장 피처는 재질을 추가하는 볼록 유형이나 재질을 제거하는 오목 유형 또는 면을 분할하는 스크라이브 유형이 될 수 있습니다. 곡면 포장 피처에 스케치 평면을 배치합니다. 방정식을 사용하여 스케치 길이를 정의합니다. 곡면 포장 피처의 오목 옵션을 사용하여 재질을 제거합니다.
Lesson
2 년 전
ENG
JPN
파트 설계부터 완료된 주조 납품까지 전 과정을 효율적으로 진행하는 모델링 기법을 학습합니다. 파트에 대한 생산 툴링을 설계하여 오토바이 기어 케이스를 작성합니다. 기어 케이스의 코어 즉, 네거티브 스페이스 설계를 시작합니다. 기어 케이스의 패턴 즉, 외부 면을 개별 솔리드 바디로 설계합니다. 툴링 바디를 새 파트 파일로 저장합니다. 솔리드 바디를 결합하고 패턴에서 코어를 제거합니다. 기계가공 피처를 적용하여 모델을 완료합니다.
Lesson
2 년 전
ENG
JPN
파트의 모서리가 너무 근접하여 올바른 필렛을 작성하기 어려울 때는 개별 솔리드 바디를 사용하는 것이 도움이 될 수 있습니다. 피처를 개별 솔리드 바디로 구분합니다. 필렛을 개별 바디에 적용합니다. 결합 명령을 사용하여 바디를 다시 함께 추가합니다. 파트에 추가 필렛을 적용하여 모델을 완료합니다.
Lesson
2 년 전
ENG
JPN
설계에서 모델의 내부 컷 피처가 가장 중요한 경우, 한 가지 방법은 파트의 네거티브 스페이스를 나타내는 솔리드 피처를 작성하는 것입니다. 네거티브 스페이스가 완료되면 결합 명령을 사용하여 다른 솔리드 바디에서 이 볼륨을 제거합니다. 파트의 네거티브 스페이스를 작성할 때 매니폴드의 내부 공간을 나타내는 솔리드 지오메트리를 사용합니다. 매니폴드의 본체로서 지오메트리 주위에 별도의 솔리드 바디를 작성합니다. 제거 작업을 통해 파트의 솔리드 바디를 결합합니다.
Lesson
2 년 전
ENG
JPN
SOLIDWORKS에는 파트 지오메트리를 평가하는 많은 도구들이 포함되어 있습니다. 파트 곡선과 곡면의 곡률을 해석하여 피처와 곡면 자체 간의 전이 품질을 평가할 수 있습니다. 곡률의 정의를 이해합니다. 모델의 곡면을 평가하기 위해 색을 사용하여 곡률을 표시합니다. 곡률 표시를 사용하여 스케치 곡선을 평가합니다. 곡선의 최소 반경과 굴곡점을 표시하는 방법을 학습합니다. 얼룩 줄을 사용하여 모델의 면에 반사를 시뮬레이션합니다. 평가 도구를 사용하여 탄젠시와 곡률 연속 조건을 인식하는 방법을 이해합니다.
Lesson
2 년 전
ENG
JPN